Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth
نویسندگان
چکیده
منابع مشابه
Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملpositive solutions for asymptotically periodic kirchhoff-type equations with critical growth
in this paper, we consider the following kirchhoff-type equations: $-left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{r}^{3},$ $u(x)>0, quad mbox{in }mathbb{r}^{3},$ $uin h^{1}(mathbb{r}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. the aim of this paper is to study the existence of positive ...
متن کاملSolutions for Singular Critical Growth Schrödinger Equations with Magnetic Field
In this paper, we are concerned with the semilinear Schrödinger equation (1.1) −∆Au− V (x)u = |u| ∗−2u , x ∈ R , where −∆A = (−i∇+A)2, u : R → C, N ≥ 3, 2∗ = 2N N−2 denotes the critical Sobolev exponent, A = (A1, A2, ..., AN ) : R N → R is the vector (or magnetic) potential, the coefficient V is the scalar (or electric) potential and may be signchanging. The nonlinear Schrödinger equation arise...
متن کاملSystems of coupled Poisson equations with critical growth
We establish the existence of a nontrivial solution to systems of coupled Poisson equations with critical growth in unbounded domains. The proofs rely on a generalized linking theorem due to Krysewski and Szulkin [9], and on a concentration-compactness argument since the Palais-Smale condition fails at all critical levels. Mathematical Subject Classification. 35J50, 35J55
متن کاملN−laplacian Equations in Rn with Critical Growth
We study the existence of nontrivial solutions to the following problem: { u ∈ W 1,N (R ), u ≥ 0 and −div(| ∇u |N−2 ∇u) + a (x) | u |N−2 u = f(x, u) in R (N ≥ 2), where a is a continuous function which is coercive, i.e., a (x) → ∞ as | x |→ ∞ and the nonlinearity f behaves like exp ( α | u |N/(N−1) ) when | u |→ ∞.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Nonlinear Analysis
سال: 2018
ISSN: 2191-9496,2191-950X
DOI: 10.1515/anona-2018-0019